Volume 4, Issue 2, December 2019, Page: 25-30
Determination of Dynamic Viscosity in Samples of Blood Plasma and Hemoglobin Solution Using Nuclear Magnetic Resonance
Yulianela Mengana Torres, Centro de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/N. Santiago de Cuba. Cuba
Manuel Arsenio Lores Guevara, Centro de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/N. Santiago de Cuba. Cuba
Juan Carlos García Naranjo, Centro de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/N. Santiago de Cuba. Cuba
Beatriz Taimy Ricardo Ferro, Centro de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/N. Santiago de Cuba. Cuba
Lidia Clara Suárez Beyries, Hospital General “Dr. Juan Bruno Zayas Alfonso”, Carretera del Caney S/N, Santiago de Cuba. Cuba
Inocente Clemente Rodríguez Reyes, Hospital General “Dr. Juan Bruno Zayas Alfonso”, Carretera del Caney S/N, Santiago de Cuba. Cuba
María A. Marichal Feliu, Hospital General “Dr. Juan Bruno Zayas Alfonso”, Carretera del Caney S/N, Santiago de Cuba. Cuba
Yomaidis Araujo Durán, Hospital General “Dr. Juan Bruno Zayas Alfonso”, Carretera del Caney S/N, Santiago de Cuba. Cuba
Received: Dec. 11, 2018;       Accepted: Jan. 14, 2019;       Published: Jan. 10, 2020
DOI: 10.11648/j.ijbbmb.20190402.12      View  375      Downloads  98
Abstract
The viscosity evaluation in Plasma is extremely useful in the clinical evaluation of different diseases. A procedure is presented, based on Protonic Magnetic Resonance, for the evaluation of the dynamic viscosity in Blood Plasma and in hemoglobin solution from the determination of the transverse relaxation time (T2). To experimentally determine the T2 value, the impulse series Carr-Purcell-Meiboon-Gill was used in a MARAN DRX console (OXFORD INSTRUMENTS) and a homogeneous magnetic system (B0 = 0.095T). Values were obtained for the viscosity of the blood plasma and hemoglobin of 1.68 ± 0.12 mPas and 12.78 ± 3.55 mPas respectively, which agreed with the determined, in the same samples, using an Ostwald viscometer (1, 45 ± 0.06 mPas for the plasma and 12.82 ± 3.35 mPas for the dissolution of hemoglobin). The dynamic viscosity of the blood plasma was determined in 236 patients with Multiple Myeloma (2.19 ± 0.58 mPas), 142 with Drepanocytic Anemia (2.20 ± 0.79 mPas) showing statistically significant increases with respect to the characteristic values of the controls (1.68 ± 0.12mPas). Magnetic Relaxation is an option to evaluate plasma viscosity because it minimizes the volume of sample needed and eliminates the need to wash the viscometer between determinations. Magnetic Relaxation can compensate its relative high cost, compared with other Viscosimetry methods, facilitating other determinations of utility in several diseases.
Keywords
Proton Magnetic Resonance, Dynamic Blood Plasma Viscosity and Hemoglobin
To cite this article
Yulianela Mengana Torres, Manuel Arsenio Lores Guevara, Juan Carlos García Naranjo, Beatriz Taimy Ricardo Ferro, Lidia Clara Suárez Beyries, Inocente Clemente Rodríguez Reyes, María A. Marichal Feliu, Yomaidis Araujo Durán, Determination of Dynamic Viscosity in Samples of Blood Plasma and Hemoglobin Solution Using Nuclear Magnetic Resonance, International Journal of Biochemistry, Biophysics & Molecular Biology. Vol. 4, No. 2, 2019, pp. 25-30. doi: 10.11648/j.ijbbmb.20190402.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Manuel A. Lores Guevara, Yulianela Mengana Torres, Juan C. García Naranjo, Norberto Rodríguez Suárez, Lidia C. Suáres Beyries, María A. Marichal Feliu, Teresa Simón Boada, Inocente C. Rodríguez Reyes, Jan Phillipé. Plasma Dynamic Viscosity Determined by NMR. Applied Magnetic Resonance 2018. DOI 10.1007/s00723-018-1026.
[2]
Mette Harreby, et all. Viscosity of Plasma in patients with rheumatoid arthritis. Annals of the rheumatic DiseasesAugust, 1987, 46 (8) 601-604. ISSN: 0003-4967.
[3]
Ajayi OI, Famodu AA, Oviasu E. Fibrinogen concentration. A marker of cardiovascular disorders in Nigerians. Turk J. Hematol; 2007, 24 (1), 18-22.
[4]
Rosencranz, R. and Steven A. Clinical Laboratory Measurement of Serum. Plasma and Blood Viscosity. Clin. Pathol; 2006, 125 (1), 78-86. ISSN: 0974-7532.
[5]
Recommendation for a selected method for the measurement of plasma viscosity. Clin. Pathol. 1984, 37 (10), 1147-1152.
[6]
A. Shames, Y. Rozenfeld, D. Keinius, Apparatus and method for non-invasive measurement of blood parameters, Patent application number: 2015/0018638A1, Publication date: 15 de Enero del 2015.
[7]
P.S. Wellman, M. Blanco, W. Peine, Portable device for nmr based analysis of rheological changes in liquid samples, Patent application number: US 2015/0130463A1, Publication date: may15, 2015.
[8]
Lee Josephson, Rui Hong, Michael J. Cima, Ralph Weissleder, Magnetic resonance-based viscometers and methods, Patent application number: WO 2009/026164A1, Publication date: 26 de Febrero de 2009.
[9]
Carlos Cabal Mirabal, Adolfo Fernández García, Manuel Lores Guevara, Evelio González, Leonardo Oramas Díaz. Kinetics studies of complex biomedical process by Magnetic Resonance. Cuban experiences. Applied Magnetic Resonance. https://doi.org/10.1007/s00723-018-0985-2
[10]
R. S. Menon and P. S. Allen. Solventprotonrelaxation of aqueoussolutions of theserumproteinsα2-macroglobulin, fibrinogen and albumin. Biophysical Journal. 1990, 57 (3), 389-396. doi: 10.1016/S0006-3495(90)82555-8.
[11]
M. Lores and C. Cabal. Proton Magnetic Relaxation Process during the Polymerization of Hemoglobin S. Appl. Magn.Reson. 2005, 28 (1), 79-84.
[12]
http://scielo.isciii.es/pdf/fh/v39n3/02articuloespecial01.pdf, revisado en marzo 2018.
[13]
Sánchez Hernández, B. E. Adolfo López Mateos, Viscosímetro de Bola, Tesis de Licenciatura de Química. Instituto Politécnico Nacional, México. D. F. 2008.
[14]
Galego Fernández, N. Manual de prácticas de laboratorio de Química Física de las Superficies y Polímeros. Editorial Pueblo y Educación, La Habana. página 48. 1986.
[15]
Lores Guevara, M. A. Estudios preliminares sobre el empleo de los radicales, en seguimiento de la Polimerización de la HbS. Tesis en opción del título de Ingeniero en Física Nuclear. Instituto Superior de Ciencias y tecnología Nuclear. 1993.
[16]
Guerra Bustillo C. W., Menéndez Acuña E., Barrera Morera R. y Egaña Morales E. Estadística. Editorial Pueblo y Educación. 1989.
[17]
www.quimica.urv.es/quimio/general/callin.pdf, revisado mayo 2018.
[18]
Lores Guevara, M. A. 2005. Estudio de los procesos de interacción Magnética y la movilidad molecular durante la polimerización de la HbS con métodos de Resonancia Magnética. Tesis presentada en opción al título de Doctor en Ciencias Físicas. Universidad de Oriente. Cuba.
Browse journals by subject